118 research outputs found

    Simulation Study for the IceCube-Gen2 Surface Array = Simulationsstudie für den IceCube-Gen2 Oberflächen-Detektor

    Get PDF

    A Two-Component Lateral Distribution Function for the Reconstruction of Air-Shower Events in IceTop

    Full text link
    The surface component of the IceCube Neutrino Observatory, IceTop, consists of an array of ice-Cherenkov tanks measuring the electromagnetic signal as well as low-energy (GeV\sim\rm{GeV}) muons from cosmic-ray air showers. In addition, accompanying high-energy (above a few 100GeV100\,\rm{GeV}) muons can be observed in coincidence in the deep in-ice detector. A combined measurement of the low- and high-energy muon content is of particular interest for tests of hadronic interaction models as well as for cosmic-ray mass discrimination. However, since IceTop does not feature dedicated muon detectors, an estimation of the low-energy muon component of individual air showers is challenging. In this work, a two-component lateral distribution function (LDF), using separate descriptions for the electromagnetic and muon lateral distributions of the detector signals, is introduced as a new approach for the estimation of low-energy muons in air showers on an event-by-event basis. The principle of the air-shower reconstruction using the two-component LDF, as well as its reconstruction performance with respect to primary energy and number of low-energy muons will be discussed.Comment: Presented at the 38th International Cosmic Ray Conference (ICRC2023). See arXiv:2307.13047 for all IceCube contribution

    Observation of Cosmic Ray Anisotropy with Nine Years of IceCube Data

    Get PDF

    Design of an Efficient, High-Throughput Photomultiplier Tube Testing Facility for the IceCube Upgrade

    Get PDF

    Multi-messenger searches via IceCube’s high-energy neutrinos and gravitational-wave detections of LIGO/Virgo

    Get PDF
    We summarize initial results for high-energy neutrino counterpart searches coinciding with gravitational-wave events in LIGO/Virgo\u27s GWTC-2 catalog using IceCube\u27s neutrino triggers. We did not find any statistically significant high-energy neutrino counterpart and derived upper limits on the time-integrated neutrino emission on Earth as well as the isotropic equivalent energy emitted in high-energy neutrinos for each event

    In-situ estimation of ice crystal properties at the South Pole using LED calibration data from the IceCube Neutrino Observatory

    Get PDF
    The IceCube Neutrino Observatory instruments about 1 km3 of deep, glacial ice at the geographic South Pole using 5160 photomultipliers to detect Cherenkov light emitted by charged relativistic particles. A unexpected light propagation effect observed by the experiment is an anisotropic attenuation, which is aligned with the local flow direction of the ice. Birefringent light propagation has been examined as a possible explanation for this effect. The predictions of a first-principles birefringence model developed for this purpose, in particular curved light trajectories resulting from asymmetric diffusion, provide a qualitatively good match to the main features of the data. This in turn allows us to deduce ice crystal properties. Since the wavelength of the detected light is short compared to the crystal size, these crystal properties do not only include the crystal orientation fabric, but also the average crystal size and shape, as a function of depth. By adding small empirical corrections to this first-principles model, a quantitatively accurate description of the optical properties of the IceCube glacial ice is obtained. In this paper, we present the experimental signature of ice optical anisotropy observed in IceCube LED calibration data, the theory and parametrization of the birefringence effect, the fitting procedures of these parameterizations to experimental data as well as the inferred crystal properties.</p

    Searching for time-dependent high-energy neutrino emission from X-ray binaries with IceCube

    Get PDF

    A time-independent search for neutrinos from galaxy clusters with IceCube

    Get PDF

    Completing Aganta Kairos: Capturing Metaphysical Time on the Seventh Continent

    Get PDF

    The Acoustic Module for the IceCube Upgrade

    Get PDF
    corecore